

Position Paper

The Need for a
Software Bill of Materials
Whether you produce, purchase, or operate software, insights
into the supply chain will provide you with a range of benefts.

Table of Contents
The Software Bill of Materials 1
What Is a Software Bill of Materials? 1
Drivers, Motivators, and Challenges 5
The Software Bill of Materials: The SBOM File 10
The Software Bill of Materials: SBOM with Debricked 16
Conclusion 20

1

The Need for a Software Bill of Materials

The Software
Bill of Materials
SBOM helps provide numerous insights to an organization
In this position paper, we will discuss several aspects of the SBOM,
including benefts and drivers for adoption, and dig a bit deeper
into the actual SBOM fles and formats But let us start with
defning what an SBOM is

What Is a Software Bill of Materials?
Simply put, the Software Bill of Materials (SBOM) is a listing of all software dependencies that
are included in a software application It includes not only the direct dependencies used but
also the dependencies used by those dependencies, also known as indirect or transitive
dependencies As such, it describes the supply chain relationships used when building
the software

A List of Ingredients
Just like food in the grocery store has a list of ingredients written on the package, we can
think of the SBOM as a list of ingredients for a software application For people with allergies,
the list of ingredients can be used to verify that it does not contain anything unwanted

Often, people may want to stay away from unethical or unhealthy content or things with too
many unnatural chemicals used only for preservation, color, or proft The list is mandatory
since we want to allow people to make informed decisions about the food they buy
The transparency also puts pressure on the manufacturer to not include unnecessary bad
ingredients since the food and the manufacturer can now be judged by the ingredients

The SBOM serves a very similar purpose By listing all packages included in a software
application, users will be able to make informed decisions about which applications to use
based on the included packages, and the developers will be incentivized to use up-to-date,
secure, and well-maintained software

Not Just Ingredients
The analogy to ingredients is often used Yes, it will show you the components that the
software product consists of But it does not stop there Looking at the most common
SBOM formats used today, there is also support for adding valuable metadata about
the components

Simply put, the Software
Bill of Materials (SBOM)
is a listing of all software
dependencies that are
included in a software
application. It includes
not only the direct
dependencies used but
also the dependencies
used by those
dependencies, also
known as indirect or
transitive dependencies.
As such, it describes
the supply chain
relationships used when
building the software.

The Need for a Software Bill of Materials

This metadata can consist of details on known vulnerabilities for the component It can
also be detailed license information, i e , the requirements and the restrictions for including
the component in another piece of software The metadata can also include how the
diferent components ft together, i e , which component depends on other components
If these relationships are complete, the SBOM can provide the full dependency graph for
all components in the software

Thus, while the ingredients analogy is easy to grasp, there can be quite a lot more to it if the
SBOM capabilities are fully used

Benefts and Use Cases
The SBOM can be used to provide insights into your software It is an invaluable enabler for
several business-critical operations related to software development, software management
and software consumption across the value chain

Not a Silver Bullet
Before discussing the benefts, we note that the SBOM does not really solve any problems
on its own It needs to be accompanied by organizational processes to take advantage of
the data it holds With technical tools and automations, you will be able to collect, present,
and add business value to the data in the SBOM

This will make the data actionable and improve software and product security It will also allow
organizations to be compliant with both licenses and security requirements Assuming such
tools and processes are in place, let’s look at some of the benefts the SBOM will give you

Security
The main claim for success is risk management and risk reduction, with security being
the most well-known use case It is easy to argue for the security case We all want to
avoid a costly data breach In 2022, the average cost of a data breach was estimated to
be $4 24 million At the same time, together with phishing, using known vulnerabilities are
the two main attack vectors seen today Now, add to this that the number of discovered
vulnerabilities is constantly increasing

With the SBOM listing all software dependencies, it is possible and feasible to assess if any
of these dependencies have known security vulnerabilities And if they do, we know to patch
them Without the SBOM, or at least without the detailed insights into the supply chain that
the SBOM provides, there would be no way of really knowing if the software is vulnerable
or not

This is a game changer for those purchasing and using the software If there is a new
vulnerability, they can immediately assess if they are exposed

The main claim
for success is risk
management and risk
reduction, with security
being the most well-
known use case.
It is easy to argue
for the security case.
We all want to avoid a
costly data breach.

2

https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/threat-intelligence/

3

The Need for a Software Bill of Materials

License Compliance
Another beneft is license compliance Every time we include code written by someone else,
e g , Open-Source Software (OSS), we are using copyrighted code We cannot use that code
without a license The license will tell us what we are allowed to do with the code and under
what circumstances

In some cases, the restrictions and our obligations are rather heavy if we want to include the
code in distributed software With the SBOM, we get insights into third-party dependencies
Then we can also know what licenses apply to the diferent dependencies These licenses
can also be written directly in the SBOM

Dependency Health
Security and license compliance are the two benefts that are most often discussed in the
SBOM context At the same time, we see that the use of OSS is increasing, and today’s
codebases have around 80–90% OSS This increased dependency on OSS presents new
challenges, some of which the SBOM can help meet

One thing that many organizations are struggling with is how to choose the best OSS
component for a specifc task There can be lots of OSS projects supporting similar
functionality, so which one should we choose? This question is more important than it may
seem at frst You want a project that has ongoing community support, not one that was or
will be abandoned soon You also want a project that will patch vulnerabilities, otherwise,
there is no safe version to upgrade to, and you must patch the source yourself

You may also want to choose a project that engages experienced developers, a project with
reasonable documentation, and perhaps a project with an active core team Though there
are no current security vulnerabilities or license compliance risks, all these properties will
contribute to a forward risk

Having a software inventory through the SBOM will help in analyzing the software
dependencies for such forward risks An automated tool, such as OpenText™ Debricked,
will automatically scan the SBOM and present you with a range of metrics that will help
you understand the health of your software dependencies

Increased Transparency
The benefts do not stop here Using the data to assess security, license compliance, and
health can be seen as very direct benefts But we also need to consider the efect of having
to supply an SBOM when software is distributed or sold to customers With the SBOM,
the software is no longer a black box There is transparency in what you deliver

The software provider can no longer hide bad practices when it comes to patching and
vetting the included software, and license compliance need to be top-of-mind to avoid
facing legal problems

Having a software
inventory through
the SBOM will help in
analyzing the software
dependencies for
such forward risks.
An automated tool,
such as Debricked,
will automatically
scan the SBOM and
present you with a range
of metrics that will help
you understand the
health of your software
dependencies.

The Need for a Software Bill of Materials

When customers have insight into the components of an application, they can also check for
security vulnerabilities, license compliance, and scrutinize the software for out-of-date and
unsupported components And by doing this, they can judge their suppliers by their practices
in choosing and maintaining dependencies

This clearly incentivizes better practices on the supplier’s side Security vulnerabilities will
afect the customer if they are exploited, so the customer can put pressure on the supplier
to have patched software in the applications This will lead to better, more secure, and
compliant software

Stronger Supplier-Customer Relationships
The supplier can also use the SBOM as a chance to get stronger relationships with their
customers Consider an organization that chooses between two suppliers, one of them is
able to provide a detailed and up to date SBOM, while the other is not willing or able to do
so As a customer, which one would you choose?

In one case, you will be in control of vetting the software yourself if you wish, and the supplier
is also incentivized to have good software practices for their third-party components

In the other case, you are buying a black box without any possibility of scrutinizing the
application’s components And why are they not providing an SBOM? Is it because they just
don’t have the tools or knowledge to produce one, or is it because the software has known
vulnerabilities? Or do they not know if there are vulnerabilities or not? Are they using tons of
outdated software? Do they even know if they do? None of the reasons are very fattering,
and all other things equal, the supplier would surely go for the supplier that provides an SBOM

The SBOM will also facilitate an ongoing discussion between the supplier and the customer
Why did you choose this software? Are we vulnerable to this new CVE related to an included
component? Yes, there will likely be more questions from customers, some good and some
less relevant, but it is a chance for the supplier to show good practices throughout the
software lifecycle This will increase confdence in the supplier and improve the relationship
between the customer and the supplier

Reduce Remediation Costs and Time-to-Market
Fixing security problems is more costly the later they are done Updating to a secure version of
a dependency can be easily done at development time If you do it later, there will be added
complexity Updating software that is in production or that has already been distributed can
be very costly

Using SBOMs and an accompanying process for keeping track of vulnerabilities, licenses,
and health information will allow developers to fnd problems quickly This will also reduce
the remediation cost In fact, having an SCA tool for keeping track of all these things related
to dependencies will probably quickly pay of when vulnerabilities, licenses, and health are
continuously monitored

Fixing security problems
is more costly the
later they are done.
Updating to a secure
version of a dependency
can be easily done at
development time. If you
do it later, there will
be added complexity.
Updating software that is
in production or that has
already been distributed
can be very costly.

4

https://debricked.com/blog/sca-tools-overview/

5

The Need for a Software Bill of Materials

With carefully considered choices for third-party dependencies, there will hopefully be
fewer problems with this software in the future This includes fewer vulnerabilities, faster
patch processes, no license issues, and better-maintained software Less added complexity
will allow developers to focus more on performance, stability, user experience, and added
features In the end, this will reduce the time-to-market and allow the supplier to be more
competitive

Concluding
The SBOM presents several benefts to all stakeholders Though the pure benefts should be
enough to immediately adopt SBOMs, this is often not enough to push organizations over
the edge Adoption sometimes requires a push from governments and authorities In the
next section, we will discuss these drivers as well as the emerging threat landscape and the
challenges presented when faced with SBOM adoption

Drivers, Motivators, and Challenges
SBOMs are not new but have received an increased interest recently For many
organizations, it has gone from being a nice-to-have thing to a must-have This shift is driven
partly by new compliance requirements and, in part, by the cybersecurity threat landscape

The many benefts discussed earlier, both for suppliers and customers, have been signifcant
drivers for the popularity of SBOMs Still, working with an SBOM presents a set of challenges
to be aware of and to overcome In this section, we take a more detailed look at the drivers,
motivators, and challenges for the usage

Compliance and Regulatory Requirements
New regulations and requirements have appeared from a range of diferent organizations,
governments, and similar These requirements are in response to the many supply chain
attacks that we have witnessed over the last few years

Cybersecurity Executive Order
Perhaps the one that is most cited is the Biden cybersecurity executive order from May 2021
It is noted that the private sector needs to step up the game if they are to provide systems to
the U S Federal Government To enhance software supply chain security, the order lists a set
of requirements that need to be fulflled for these suppliers

One part of the order discusses SBOMs and specifcally requires that the purchaser is
provided an SBOM together with the purchased software At the same time, the National
Telecommunications and Information Administration (NTIA) was tasked to create a list of the
minimum required elements of such an SBOM

Adoption sometimes
requires a push from
governments and
authorities. In the next
section, we will discuss
these drivers as well
as the emerging threat
landscape and the
challenges presented
when faced with
SBOM adoption.

https://debricked.com/blog/software-supply-chain-attacks-part-one/
https://debricked.com/blog/software-supply-chain-attacks-part-one/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://debricked.com/blog/comply-with-the-sbom-requirements-of-the-new-cybersecurity-executive-order/
https://debricked.com/blog/comply-with-the-sbom-requirements-of-the-new-cybersecurity-executive-order/
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

The Need for a Software Bill of Materials

Proposed DHS Law
Related is the H R 4611—DHS Software Supply Chain Risk Management Act of 2021, which is
a proposed law that will require contractors to the Department of Homeland Security (DHS) to
submit an SBOM together with a certifcation that there are no security vulnerabilities in the
software Alternatively, if there are known vulnerabilities, they must provide a list of these

The EU Cyber Resilience Act
In the EU, there is a proposal for a regulation for cybersecurity requirements, the Cyber
Resilience Act Regulations are mandatory to follow for all member states Among other
things, the Cyber Resilience Act requires manufacturers to draw up an SBOM Diferent from
the U S regulations, this EU regulation will apply to all manufacturers of products with
digital elements that connect to a device or a network On the other hand, only top-level
dependencies need to be included in the SBOM

FDA Requirement
For specifc markets, the FDA is currently pushing for an SBOM to be a mandatory
requirement for healthcare products This is in response to an increased number of
cybersecurity incidents in healthcare, as, e g , reported by Forbes Moreover, patient data
protected by healthcare products are typically very sensitive, and service disruption by
these products can jeopardize the life of people

Other Guidelines
In addition, guidelines from the National Highway Trafc Safety Administration mention SBOM
as a means to track vulnerabilities in the vehicle development process These guidelines are
non-binding and voluntary but underline the importance perceived throughout several verticals

The Cybersecurity Threat Landscape
Requirements and legislation will drive the adoption, but these requirements emerge
from the actual need in industry and society The cybersecurity threat landscape is present
with or without regulations, and many businesses adopt SBOM practices regardless of
external requirements Let us take a brief look at the cybersecurity threat landscape and
how it is developing

New Vulnerabilities
First, the number of vulnerabilities registered as CVEs in the National Vulnerability Database
is increasing In 2017, the number of new vulnerabilities jumped to more than 14,000 after
previously never exceeding 8,000 in a year Since then, the number has steadily increased,
and in 2022 it surpassed 25,000

There are more vulnerabilities if we include the GitHub Advisory Database and those that
are language specifc, e g , FriendsOfPHP and the Python Packaging Advisory Database,
but there are signifcant overlaps

Requirements and
legislation will drive
the adoption, but these
requirements emerge
from the actual need
in industry and society.
The cybersecurity
threat landscape is
present with or without
regulations, and many
businesses adopt SBOM
practices regardless of
external requirements.

6

https://www.congress.gov/bill/117th-congress/house-bill/4611/text
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52022PC0454
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52022PC0454
https://www.medtechdive.com/news/fda-seeks-more-power-for-medical-device-cybersecurity-mandates/605107/
https://www.forbes.com/sites/forbestechcouncil/2022/12/20/health-care-cybersecurity-past-present-and-future/?sh=47a7a2b91b64
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-09/cybersecurity-best-practices-safety-modern-vehicles-2022-tag.pdf
https://github.com/advisories
https://github.com/FriendsOfPHP
https://github.com/pypa/advisory-database

7

The Need for a Software Bill of Materials

Exploiting Vulnerabilities Is a Common Attack Vector
A known vulnerability can be used as an attack vector in a breach With many vulnerabilities
across a range of applications, there are more opportunities to mount attacks Surely enough,
looking at the top attack vectors as observed by IBM Security X-Force in the 2022 report,
34% was due to exploiting vulnerabilities, second only to phishing Thus, fxing security
vulnerabilities must be top-of-mind for organizations relying on software applications
in their business

Cost of Breaches
So, clearly, there are not only breaches due to security vulnerabilities, but they are prevalent
Add to this; a breach is very costly The global average cost of a data breach caused by a
vulnerability in third-party components is estimated to be $4 55 million If you do not take
application security seriously, it is just a matter of time before it happens

In all, the cybersecurity threat landscape calls for investing in application security The alternative
is just too costly With assessing and remediating security vulnerabilities being a top SBOM
use case, it is natural to adopt it

Reliance on Software
Software is shaping our society, and every day we have become increasingly reliant on
software In the smart city, we try to optimize for sustainability and efciency through sensors,
actuators, databases, communications, and processing

The data that is collected, processed, and stored will often be sensitive, so we need
confdentiality Also, integrity protection is needed to ensure that the data is not modifed in
transit or at rest All parts and their functionality are controlled by software

Since software infuences how we live and work, the need to have better insights into its
inner workings becomes more important The SBOM can be used to provide at least parts
of this insight

Challenges
From the previous discussion, it should be clear that SBOMs are here to stay But, when
generating and working with SBOMs, there are several challenges to consider It’s not just to
generate an SBOM and call it a day Having an SBOM is not worth much if you cannot, or do
not, use it for its intended purposes

Completeness
Completeness refers to the SBOM including all data that is expected Looking at the various
SBOM formats, there is support for many diferent entries A complete SBOM does not have
to include all this data Instead, it does have to cover all software components that it sets
out to include Moreover, if there is information for a component that can be expected to be
included, this must be included

When generating and
working with SBOMs,
there are several
challenges to consider.
It’s not just to generate
an SBOM and call it a
day. Having an SBOM
is not worth much if you
cannot, or do not, use it
for its intended purposes.

https://www.ibm.com/reports/threat-intelligence/
https://www.ibm.com/reports/data-breach

The Need for a Software Bill of Materials

Missing Components
If information is missing, e g , there is an open-source software component that is used but
not included in the SBOM, then this poses a risk to the receiving organization It could mean
critical vulnerabilities that cannot be listed and assessed It can also mean that the application
uses a component with a non-permissive license in a way that violates the license In addition
to the security and license compliance risks, incomplete SBOMs will reduce the trust in the
provider and can delay the time-to-market for an application

Missing Information
The same is true for open-source components that are included, but information about
the component is incomplete In many cases, vulnerability information is written directly
in the SBOM Then, if vulnerability information is only taken from NVD, there will likely be
vulnerabilities that are present but not included

Known Unknowns
It can be argued that an incomplete SBOM can be worse than no SBOM at all If we think the
SBOM is complete, we will have a false sense of security, perhaps letting the guard down and
not being fully prepared to handle an exploited security vulnerability With knowledge of a
vulnerability, even if it is not patched, other measures can be taken to avoid exploitation
and breaches

To help with “known unknowns,” the common SBOM formats have support for indicating if a
dependency relationship is (possibly) incomplete or if all relations have been accounted for

Up to Date
An SBOM is not a one-of thing It is a moving target that needs to be kept up to date
Having an outdated SBOM comes with the same risks as having an incomplete one,
erroneous data

The SBOM can become outdated for diferent reasons An application continuously
developed and updated will soon have an outdated SBOM New dependencies will be
used, some will be updated to newer versions, while others might be removed

Any assessments based on outdated SBOMs risk having errors Vulnerabilities can be
missed, while some might already be fxed The frst is a security problem, and the latter
gives overhead for developers and security analysts since there will be false positives in
the assessment

Outdated External Data
The SBOM can also be outdated in terms of the external data it can provide Security
vulnerabilities are constantly discovered If the SBOM includes a list of known vulnerabilities,
e g , CVE identifers, such a list will be outdated as soon as there is a new vulnerability
afecting any of the included components

Any assessments based
on outdated SBOMs
risk having errors.
Vulnerabilities can be
missed, while some
might already be fxed.
The frst is a security
problem, and the latter
gives overhead for
developers and security
analysts since there will
be false positives in
the assessment.

8

9

The Need for a Software Bill of Materials

This should come as no surprise and looking at the guidelines for how to use the SPDX
specifcation, it is even explicitly stated that “SPDX consumers should always assume
vulnerabilities enumerated by an SPDX creator to be out-of-date ” The need for having
up to date SBOMs makes it important also to include a timestamp

Automation and SCA
To help generate the SBOM, automation is almost always necessary There are just too
many dependencies in software today, and there is too much information that needs to be
collected and to keep up to date to do it manually An automated tool is less error-prone and
can generate a full SBOM in a fraction of the time compared to manual processes

Instead of having to constantly update the SBOM due to external changes, an SCA tool can
be used to keep track of vulnerabilities, alert you when they arise, and even help you to fx
them This will always provide an up-to-date view of the risks For developers, by integrating
the code repositories with the SCA tool, the view will also update when there are new or
updated components

Actionable
The SBOM is useless if the information in it is not used It cannot do anything on its own,
which is why it is crucial that it is actionable This means that both the content of the SBOM
needs to be in a format that can be easily consumed and that its content can be used for the
use case it is generated for It also means that there need to be organizational processes in
place to use the SBOM when it is received

Targeting the Use Case
An SBOM with only license information could be sufcient if only license compliance is
considered, but not if you need to certify that there are no vulnerabilities If you want to use
the SBOM to create an attribution report for your use of open-source software, the license
text also needs to be included It is not enough with the license name

Concluding
The current threat landscape with an increasing number of vulnerabilities and attacks should
be enough drivers for adopting SBOMs on a wider scale If that is not enough, the push from
regulations and authorities will surely help organizations in the right direction

However, as we have seen, it is not just to turn a switch and have everything working in two
shakes of a lamb’s tail Some challenges need to be considered for a purposeful deployment

To help push forward, to have automation, and to have interoperability between
organizations, there are a few well-defned formats for encoding the SBOM information

The leading formats, SPDX and CycloneDX, will be described in the next section

The current threat
landscape with an
increasing number
of vulnerabilities and
attacks should be
enough drivers for
adopting SBOMs on a
wider scale. If that is
not enough, the push
from regulations and
authorities will surely
help organizations in
the right direction.

https://debricked.com/blog/sca-tools-overview/

The Need for a Software Bill of Materials

The Software Bill of Materials: The SBOM File
There are a few diferent formats for storing and encoding SBOM information The most well-
known targeting supply chain transparency is the SPDX and the CycloneDX formats

In this post, we take a deeper dive into these formats and provide a comparison between
them We also briefy discuss the SWID tags, which can also be used for SBOM information,
but has a somewhat diferent target use case

NTIA Minimum Elements
The Cybersecurity Executive Order instructed (among others) the National Telecommunications
and Information Administration (NTIA) to publish a set of minimum elements for an SBOM
These elements are divided into three categories

• Data felds

• Automation support

• Practices and processes

Let us discuss these categories in a little more detail

Data Fields
The data felds defne what data an SBOM should include This is the minimum amount
of information required for each component, as well as metadata for the SBOM fle itself
Seven data felds are defned These are the supplier of a component, the component name,
its version, other unique identifers, the relationship between the dependencies, i e , which
upstream components are used by a component, the author of the SBOM, and a timestamp

Having other unique identifers will allow the component information to be mapped to known
vulnerabilities and licenses Such mappings assume that the component is not confused with
other components of a similar name The main unique identifers are CPE, PURL, and SWID

Automation Support
The vast number of components, and their relations, require tools support for both reading
and generating the SBOM Automation and tools support will also ensure interoperability
between organizations Since SBOMs will often be provided from a supplier to a purchaser/
consumer, such interoperability is crucial for its usage

While automation requires a machine-readable format, the SBOM should also be human-
readable This will help with manual troubleshooting and a quick overview of certain specifc
data in the SBOM To support these requirements, NTIA mandates using one of the SPDX,
CycloneDX, or SWID data formats for an SBOM This list might be expanded in the future,
but proprietary formats should be explicitly avoided

The vast number
of components,
and their relations,
require tools support
for both reading and
generating the SBOM.

10

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

11

The Need for a Software Bill of Materials

Practices and Processes
NTIA defnes several minimum requirements for the processes surrounding the creation
and management of SBOMs Related to the frequency of generating an SBOM, it must be
generated every time there is a new software release

The dependencies used in software can be seen as a tree hierarchy, with the direct
dependencies at the top and the upstream transitive dependencies below At a bare
minimum, the SBOM must include all top-level direct dependencies These should be
provided with enough detail so that it is possible to fnd the transitive dependencies
Additionally, it must be clear if there are no further transitive dependencies or if the
presence of such dependencies is unknown

NTIA also highlights the importance of starting with generating and providing SBOMs as
soon as possible This includes accepting that an SBOM can have some initial errors and
omissions, but instead of waiting for perfection, SBOM practices should start today

Two Main Formats: SPDX and CycloneDX
There are two main formats for SBOMs that are widely used and accepted SPDX, which
is maintained and supported by the Linux Foundation, and CycloneDX, maintained and
supported by OWASP

Let us briefy look at the SPDX and CycloneDX fles to get a feeling for the information they
can contain Both formats have support for much more data than given here, and we refer
to the respective specifcations for details The information provided here is based on SPDX
v2 3 and CycloneDX v1 4

Inside the SPDX SBOM File
An SPDX SBOM consists of a set of sections The frst part, which is mandatory, is the
meta-information about the SPDX fle This is called the Document Creation Information
This includes, e g , when the SBOM was created, which tool was used to create it, which SPDX
version it is based on, and other SPDX documents that are referred to in this document

PACKAGE INFORMATION

Then there are sections for each of the packages Each package includes basic information
on its name, version, and download location There is also a unique identifer to be used
within the SPDX document to reference other information

The package section also includes license information, and if diferent fles within the
package have diferent licenses, then the complete list of all found licenses within the
package can be listed The package section in SPDX also has support for free text comments
on licenses, copyright text, and other types of free text comments on the package in general

There are two main
formats for SBOMs
that are widely used
and accepted. SPDX,
which is maintained
and supported by the
Linux Foundation,
and CycloneDX,
maintained and
supported by OWASP.

https://spdx.dev/specifications/

The Need for a Software Bill of Materials

SECURITY INFORMATION IN EXTERNAL REFERENCES

An important feld is the one for external references This feld can be used to refer to an
external source for more information about the package

One defned category for external information is security, which can be used to link to
advisories, fxes, or URLs with security-related information The advisory can include links to
CVEs, the vendor’s vulnerability disclosure document, or even security information formatted
in a CycloneDX SBOM fle

FILES AND SNIPPETS

Following information about a package, it is also possible to add information about specifc
fles inside a package Such information is given in a separate section after the corresponding
package section Further details can be given in yet another section referring to specifc
snippets inside a fle These snippets can be referenced by byte ranges or line numbers
and can have licenses that are diferent from the rest of the fle or from the package

DESCRIBING THE DEPENDENCY GRAPH

In the package, fle, and snippet sections, the data given in each element is independent of
the others The relationship between a package and its fles is implicit in that the fles section
follows the corresponding package section But there can also be relationships between
fles and, maybe more importantly, relationships between packages One package typically
depends on another package, and there are transitive dependencies such that one package
will depend on a package that, in turn, depends on a third package, etc

These relations between components are described in their own section The relationship
can be one of many but “depends on” and “dependency of” are useful for describing the
dependency graph for the software

The relation can also be marked to indicate that a part of the graph might be incomplete or
that the creator assures that it is complete

Inside the CycloneDX SBOM File
Similar to SPDX, CycloneDX starts with identifcation information and metadata This specifes
that it is a CycloneDX SBOM, which specifcation version it conforms to, and the SBOM
version for that particular software Then there is, e g , a timestamp and an identifer for
the tool used to generate the SBOM (or the author if it was manually generated)

COMPONENTS

Following the metadata, the components are described The component type is defned as,
e g , fle, container, library, or application Some notable component information includes the
component’s type, name, and version

Similar to SPDX,
CycloneDX starts
with identifcation
information and
metadata. This specifes
that it is a CycloneDX
SBOM, which specifcation
version it conforms
to, and the SBOM
version for that
particular software.

12

https://cyclonedx.org/docs/1.4/json/
https://cyclonedx.org/docs/1.4/json/

13

The Need for a Software Bill of Materials

To make it uniquely identifable, it can also include one or several of the CPE, PURL or SWID
identifers This will allow the SBOM fle to be used to identify and monitor new vulnerabilities
in the software The component information will also include license information It will hold
the license ID but can also include the license text itself or a URL pointing to the license fle
Each component can also include a bom-ref identifer which can be used to reference the
component in other parts of the SBOM

SERVICES

Separate from components, it is also possible to list services, e g , microservices The SBOM
can then be used to defne if using a service crosses a trust boundary if it requires
authentication and specifc API endpoints for a service

EXTERNAL COMPONENTS

CycloneDX has also support for adding external references These can be either declared
as part of a specifc component or be defned outside the components part of the SBOM
External references are added in the form of URLs to the information

DESCRIBING THE DEPENDENCY GRAPH

The relationship between dependencies is documented in a separate part It is here possible
to refer to a component using the bom-ref attribute and to declare which other components
it directly depends on Doing this for all components will provide a dependency graph of the
software that represents both direct and transitive relationships between dependencies

COMPOSITIONS AND ASSEMBLIES

CycloneDX has also support for describing compositions, which is a collection of
components, services, and dependency relationships A composition can describe an
assembly which can be seen as a well-defned part of the software or application that,
in turn, can include other parts in a nested fashion The composition can also be described
with dependencies, which are parts of the software that requires other independent parts

VULNERABILITIES

Vulnerabilities are described explicitly in a separate part of the CycloneDX SBOM
A vulnerability description refers to the bom-ref of the afected component and can include
several pieces of information This includes the vulnerability ID, the publisher, references,
the CWE identifer, CVSS information, a description of the vulnerability, advisory information,
timestamps, etc

It is also possible to include analysis details for the vulnerability, e g , describing it as
resolved, exploitable, in triage, or not afecting the component or service, including a
justifcation for this assessment

Vulnerabilities are
described explicitly in
a separate part of the
CycloneDX SBOM.
A vulnerability
description refers
to the bom-ref of the
afected component
and can include several
pieces of information.

The Need for a Software Bill of Materials

SIGNING DATA

Finally, the complete SBOM can also be signed using a JSON-formatted digital signature,
including the public verifcation key and a certifcate path In addition to signing the
SBOM, individual parts, such as components, services, and compositions, can also be
individually signed

COMPARING SPDX AND CYCLONEDX

SPDX and CycloneDX share the support for the main use cases in that both licensing
information and vulnerability information is supported However, they difer in the extent of
the support Looking at the specifcations, it is clear that SPDX leans more heavily towards
the licensing use case, while CycloneDX has more support for vulnerability information

LICENSE INFORMATION SUPPORT

As an example for license information, SPDX adds a specifc feld for “concluded license,”
which can be used if the license can not be determined or if there has been no attempt
to fnd it It also has a feld for collecting all licenses in the fles of a package and adding
comments to the licenses

The snippet information section also has its own felds for license information Such a level
of granularity, down to specifying snippets of fles, is not supported by the CycloneDX
specifcation As part of the SPDX specifcation, there is also the SPDX license list This list
provides a standardized short identifer for all commonly found licenses This identifer is
becoming an industry standard for identifying licenses and is also used by CycloneDX SBOMs

SECURITY AND VULNERABILITY INFORMATION SUPPORT

Looking at security, CycloneDX defnes a large number of felds related to vulnerabilities,
their metadata, assessment, and the actions taken for them This data is not explicitly
supported by SPDX, though it is possible to use external references to include some
security data

Another security-related diference is the support for digital signatures in the CycloneDX
SBOM Both the SBOM and parts of the data inside it can be digitally signed to provide data
authentication and non-repudiation for the data It is, of course, also possible to digitally
sign an SPDX document Still, it has no support for enveloped signatures, as is the case
for CycloneDX, i e , the signature is part of the signed document

Encoding of Data
Both SPDX and CycloneDX support JSON formatted data, while SPDX additionally supports
YAML, RDF, a tag: value text fle, and XLS spreadsheets CycloneDX has XML support,
while SPDX is looking to add this support in the next release

Looking at security,
CycloneDX defnes a
large number of felds
related to vulnerabilities,
their metadata,
assessment, and the
actions taken for them.
This data is not explicitly
supported by SPDX,
though it is possible to
use external references
to include some
security data.

14

15

The Need for a Software Bill of Materials

Software Identifcation (SWID) Tags
As noted above, NTIA also includes the possibility of using Software Identifcation (SWID)
Tags as an SBOM format A SWID tag can include the information needed for transparency in
the open source software supply chain, but its main use case is somewhat diferent A SWID
tag is designed for tracking installed software throughout the lifecycle Here, throughout
the lifecycle is supported by defning diferent types of tags for pre-installed and installed
software, as well as patch tags, to defne patches to software and supplemental tags for
additional information

The XML-formatted SWID tag will include information about the software, its license, and the
fles needed to install the software It can also include information on what other packages
are needed as a prerequisite for installation This will allow for the automated installation of
software and for monitoring what software is installed in a system, which version it has, and
which patches have been installed

Four Variants of SWID Tags
The corpus tag is used pre-installation and is used by the software installer They can
authenticate the issuer and be used to verify the integrity of the software License information
can be used to make sure that no license is violated before the software is installed

The primary tag is used to describe software that has been installed It has a globally unique
tag ID to make it possible to track that particular installation It can also link to other SWID
tags Such a link can be defned as a component if other software is a component of the
software It can also be defned with a required attribute if it depends on another software
component A simple example is a productivity suite that has a word processor and a
spreadsheet processor as components Both these will, in turn, have some common libraries
and functionalities as required

The patch tag describes a patch rather than the software product itself It includes
information about which product the patch is for, if other patches need to be applied before
this patch, or if it replaces another patch

The supplemental tag can be used by the local system to provide additional information
This could be, e g , the time of installation

Tags Are Tied to Installed Software
SWID tags are designed to be removed once the installed software is uninstalled and
removed from the system This shows the close relationship that the SWID tags have with
the installed software Comparing this to SPDX and CycloneDX, these two SBOM formats are
more descriptive of the software and its composition and not tied to the particular installation
of the software

For more details, NIST provides an excellent guideline for SWID tags

SWID tags are designed
to be removed once
the installed software
is uninstalled and
removed from the
system. This shows the
close relationship that
the SWID tags have with
the installed software.

https://csrc.nist.gov/projects/software-identification-swid/guidelines
https://csrc.nist.gov/publications/detail/nistir/8060/final

The Need for a Software Bill of Materials

Concluding
Having well-defned formats for storing, communicating, and encoding SBOM information is
vital for its adoption Both CycloneDX and SPDX have been widely adopted, and it seems that
the current trend is that CycloneDX is getting the most attention This can be attributed to the
fact that the recent drivers, e g , the Biden executive order and the EU cyber resilience act,
are heavily focused on the security benefts for SBOMs

In the fnal section, we will show how Debricked supports both exporting and importing of
SBOMs to help you stay on top of security and license compliance

The Software Bill of Materials: SBOM with Debricked
With Debricked, it is easy to both generate and analyze an SBOM, and there are several ways
of doing both In this post, we look at some of the possibilities to create and scan SBOM fles
with Debricked

At Debricked, we favor and currently support the CycloneDX format for SBOMs This is not
to say that there are no use cases that are a better ft for the SPDX format Still, we believe
that the license support in CycloneDX is sufcient, and the additional vulnerability felds it
provides are very useful

Generating an SBOM
Generating or exporting an SBOM is available for our enterprise-tier customers If you have
integrated your repositories with Debricked, an SBOM can be generated as a report You can
choose to generate the SBOM for a single repository or a chosen set of repositories, or you
can generate a global report for all your integrated repositories

16

Figure 1. Generating reports
in the Debricked interface

At Debricked, we favor
and currently support
the CycloneDX format
for SBOMs. This is not to
say that there are no use
cases that are a better
ft for the SPDX format.
Still, we believe that
the license support in
CycloneDX is sufcient,
and the additional
vulnerability felds it
provides are very useful.

https://debricked.com/blog/comply-with-the-sbom-requirements-of-the-new-cybersecurity-executive-order/
https://debricked.com/

17

The Need for a Software Bill of Materials

The SBOM will be generated as a JSON fle and emailed to the email address associated with
your account

Some of the things that will be found in the SBOM generated by Debricked are:

• All dependencies, including transitive dependencies, together with their CPE and/or PURL
identifer

• The identifed license for the dependencies Both the SPDX license short name and the
actual license text is provided As external references, we also point to the URLs of the
actual license information This reference is denoted “Proof of License” and enables
anyone to fnd the license fle easily

• The vulnerability data for each dependency This data includes the vulnerability identifer
(CVE, GHSA, etc), the source, the CWE, a description of the vulnerability, references to
more information, the CVSSv2 and CVSSv3 scores, and dates when it was published and
last updated

• Relations between dependencies All dependencies are listed for each library, providing
the complete dependency graph for all open-source components If a library has no
dependencies, this is indicated with an empty list

Using the API
If you prefer to use our API, the SBOM can be generated using the corresponding endpoint
There are a few API endpoints to choose from, and we refer to the API documentation for a
complete overview One of them is to simply generate an SBOM based on a selected set of
repositories, as shown below

Figure 2. Excerpt from the Debricked API documentation

If you prefer to use our
API, the SBOM can be
generated using the
corresponding endpoint.
There are a few API
endpoints to choose
from, and we refer to the
API documentation for
a complete overview.

The Need for a Software Bill of Materials

Here you can choose if you want to include vulnerability and/or license data as well Using the
API will require an access token A refresh token can be generated in your Debricked account,
which can be used to generate a JWT token Or you can just use your login ID and password
to generate a JWT token immediately

Uploading and Analyzing an SBOM
If you have an SBOM and want it analyzed, Debricked can do it for you We even monitor the
dependencies for new vulnerabilities, and we can alert you if any are found

Manual Upload
The easiest way to analyze an existing CycloneDX SBOM is to upload it in the Debricked GUI
Just go to Repository settings, and click the Manual scan button

Figure 3. You can manually
drag and drop an SBOM
to have it scanned

Here you can select the SBOM fle or just drag and drop it The SBOM will show up as a new
repository, listing all vulnerabilities, licenses, and dependencies If there is a new vulnerability,
it will also show up in the user interface

18

If you have an SBOM
and want it analyzed,
Debricked can do it for
you. We even monitor
the dependencies for
new vulnerabilities,
and we can alert you
if any are found.

19

The Need for a Software Bill of Materials

Adding SBOM to a Repository
The manual scan option will show new vulnerabilities in the UI If you want to be alerted, e g ,
with an email, every time there is a new vulnerability, then you can simply add the SBOM to
be scanned as part of the CI/CD When scanning the repository, Debricked will fnd the SBOM
fle and scan it for new vulnerabilities

Upon a scan, you can set up an automation rule to trigger existing or new vulnerabilities
You can tailor the automation rule to, e g , trigger an alert if the vulnerability is of high
or critical severity Below, we show an example that will send an email to all Debricked
account administrators upon a scan if there is a new vulnerability or a vulnerability with at
least high severity

Figure 4. Adding a new automation rule

This will allow the administrators to be reminded of high-severity vulnerabilities on every
scan but only to be alerted to lower-severity vulnerabilities once Also, vulnerabilities that
have been triaged not to afect the organization or software will not cause any alerts This is
ensured by checking the box “Ignore unafected vulnerabilities ”

Upon a scan, you can set
up an automation rule to
trigger existing or new
vulnerabilities. You can
tailor the automation rule
to, e.g., trigger an alert if
the vulnerability is of high
or critical severity.

The Need for a Software Bill of Materials

Let us look at an example of how you can use GitHub for monitoring and alerting on
identifying new vulnerabilities To trigger a scan, you use a scheduled GitHub actions
workfow Workfows are added to the github/workfows subfolder For Debricked, the
workfow can look like this

name: Debricked scan
on:
schedule:
- cron: “0 9 * * *”
jobs:
vulnerabilities-scan:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: debricked/actions/scan@v1
env:
DEBRICKED_TOKEN: ${{ secrets.DEBRICKED_TOKEN }}

This will run a new scan of the SBOM every day at 9 am and trigger alerts according to the
automations rule above

It is, of course, possible to do similar scheduled scans if you are using other CI/CD tools

Conclusion
Since Debricked supports scanning and monitoring SBOMs, the SCA tool is not only for
software producers and developers It is also a powerful tool for purchasers and consumers
Debricked will handle the automation and interoperability parts, monitor new vulnerabilities
and license changes, and alert you on any signifcant changes

Once the requirements to supply an SBOM together with software products are met, all
stakeholders throughout the value chain will be able to better understand the products’
security This will lead to more secure products, better responses to new vulnerabilities, and
transparency in the software supply chain

Register for Debricked for free and take full control of security, compliance and health with a
toolkit that will revolutionize the way you use open source

Register for Debricked
for free and take full
control of security,
compliance and health
with a toolkit that will
revolutionize the way
you use open source.

20

https://debricked.com/blog/sca-tools-overview/
https://debricked.com/app/en/register
https://debricked.com/app/en/register

Connect with Us
www opentext com

OpenText Cybersecurity provides comprehensive security solutions for companies and partners of all sizes From prevention, detection and response to recovery, investigation and compliance,
our unifed end-to-end platform helps customers build cyber resilience via a holistic security portfolio Powered by actionable insights from our real-time and contextual threat intelligence,
OpenText Cybersecurity customers beneft from high efcacy products, a compliant experience and simplifed security to help manage business risk

762-000084-004 | O | 01/24 | © 2024 Open Text

https://www.opentext.com
https://www.linkedin.com/showcase/9022/
https://twitter.com/OpenTextSec

	The Need for a Software Bill of Materials
	Table of Contents
	What Is a Software Bill of Materials?
	Drivers, Motivators, and Challenges
	The Software Bill of Materials: The SBOM File
	The Software Bill of Materials: SBOM with Debricked
	Conclusion

